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Abstract A phenomenon of flashing related to discharging initially subcooled liquid from a high pressure 
containment into a low pressure environment is very important in several industrial systems such as 
nuclear reactors and chemical reactors. A new model for the flashing process is proposed here based on 
the wall nucleation theory, bubble growth model and drift-flux bubble transport model. In order to 
calculate the bubble number density, the bubble number transport equation with a distributed source from 
the wall nucleation sites is used. The model predictions in terms of the void fraction are compared with 
Moby Dick and BNL experimental data. This result indicates that, at least for the experimental conditions 
considered here, the mechanistic prediction of the flashing phenomenon is possible, based on the present 

wall nucleation model. 

1. INTRODUCTION 

A PROBLEM of discharging an initially subeooled liquid 
from a high pressure condition into a low pressure 
environment is quite important in safety analyses of 
nuclear power, chemical and process plants. The 
dynamics of discharge and critical flow phenomena 
for single-phase fluids are well understood and accept- 
able analytical models are available. A number of 
problems arise for situations in which two-phase flow 
is involved. This is because the mechanical and 
thermal non-equilibrium effects as a consequence of 
liquid flashing may play an important role in the 
process. 

In predicting two-phase flow transients, the inter- 
facial transfer terms are among the most essential 
factors in modeling. These interfacial transfer terms 
in two-fluid models specify the rate of  phase change, 
momentum exchange and heat transfer at the interface 
between phases. In the two-fluid model formulation 
[1--4], the transport processes of  each phase are ex- 
pressed by their own balance equations. Therefore, 
it is expected that the model can predict more de- 
tailed changes and phase interactions than a mixture 
model such as the drift-flux model [5, 6]. 

However, the weakest links in the two-fluid model 
are the constitutive equations for the interfacial inter- 
action terms. The difficulties arise due to the com- 
plicated motion and geometry of the interfaces in a 
general two-phase flow. The interfacial transfer terms 
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are strongly related to the interfacial area and to the 
local driving mechanisms, such as the degree of tur- 
bulence near the interfaces [1]. Basically, the inter- 
facial transport of mass, momentum and energy is 
proportional to the interfacial area concentration and 
to a driving force. This area concentration defined 
as the interfacial area per unit volume of  mixture, 
characterizes the kinematic effects ; therefore, it must 
be related to the structure of  the two-phase flow field. 
On the other hand, the driving forces for the inter- 
phase transport characterize the local transport mech- 
anism, and they must be modeled separately. Basic 
macroscopic parameters related to the structure of 
two-phase flows, particularly of a dispersed (bubbly 
or droplet) flow, are the void fraction, particle number 
density, interfacial area concentration and the particle 
shape factor. From geometric considerations it is dem- 
onstrated that the particle number density is a key 
parameter in determining the interfacial area con- 
centration but it has not been sufficiently investigated 
in the literature [7]. 

Realizing the significance of the bubble number 
density as an important parameter for predicting the 
interfacial area in a two-phase flow a model for the 
flashing process is proposed here based on the wall 
nucleation theory and the bubble growth model. In 
order to calculate the bubble number density, the 
bubble number transport equation is used. 

2. FLASHING PHENOMENA 

Flashing can be considered as a continuous process 
which occurs in several stages. Generally speaking, 
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NOMENCLATURE 

A~ cross-sectional area ~h 
Av Avogadro's number vr 
B frequency of interaction of a molecule v~ 

with its neighbors Wcr 
( ~ kT/Planck's constant) 

Co distribution parameter z 
Dd bubble departure diameter z~b 
f bubble generation frequency 
G mass velocity Zco 
g gravity 
h interfacial heat transfer coefficient 
hfg latent heat of vaporization 
J frequency of nucleation events per unit 

volume ~f 
j volumetric flux Fg 
,lap flashing Jakob number based on 0 

depressurization superheat 
Jakob number based on initial superheat p 
sphericity correction factor p,  
Boltzmann constant 

J a  T 
Ks 
k 
kf 
m 

Na 
Nb 
Nh 
N* 

gb 
Re 
R0 

thermal conductivity of  liquid 
mass of the molecule 
rate of production of  vapor nuclei 
active nucleation site density at wall 
bubble number density 
number of heterogeneous nucleation sites 
dimensionless active nucleation site 
density 
unit vector normal to the channel wall 
directed away from the fluid 
unit vector normal to ~ located in the 
cross-sectional plane and directed 
away from the fluid 
bubble radius 
critical cavity size 
initial bubble radius 
dimensionless critical cavity radius, 
R~/(Do/2) 
temperature 
bulk fluid temperature 
saturation temperature 
wall temperature 
wall superheat, Tw-- Tsar 
effective superheat for nucleation 

under flashing 

T 
T,. 
T~at 
Tw 
AT~up 
A Tsuo,~ 

ATsup.sc effective superheat for nucleation 
under normal or subcooled boiling 

t time 
Vgj drift-flux velocity 
v volume 
Vb local bubble velocity 

mean bubble velocity 
bubble relative velocity 
channel wall velocity 
critical work required to create an 
unstable bubble nucleus 
axial coordinate 
axial coordinate at point of flashing 
incipient 
axial coordinate at point where Co 
reaches 1.0. 

Greek symbols 
void fraction 
thermal diffusivity of liquid 
vapor mass source rate 
contact angle 
wetted (or heated) perimeter 
density 
non-dimensional density difference, 
Ap/pg 

Ap density difference between liquid and 
vapor 

a surface tension between liquid and vapor 
~b heterogeneity correction factor for 

critical work for bubble nucleation 
~ho heterogeneous bulk liquid nucleation 

rate 
~bho homogeneous bulk liquid nucleation rate 
q~si bulk sink rate due to recondensation 
~b,o bubble source rate due to bulk liquid 

nucleation 
~b,~ bubble nucleation rate from active 

cavities 
f~ time constant for pressure variation. 

Subscripts 
b bubble 
eb ebullition 
f liquid phase 
g vapor phase 
he heterogeneous 
ho homogeneous 
w wall. 

Superscript 
* dimensionless quantities. 

Averages 
( ( ) )  area average 
( ~ line average. 
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flashing occurs when liquid is brought to the region 
where the local pressure is below the saturation press- 
ure corresponding to the liquid temperature. In a 
flowing system, such as the flow in a pipe or in a 
nozzle, a depressurization is caused by the friction or 
acceleration pressure drop which brings the liquid 
from initially subcooled to saturated conditions. With 
further decreases in the pressure, liquid becomes 
superheated and the nucleation process starts. The 
degree of superheat required for starting of the 
nucleation may depend on the flow and surface con- 
ditions for a particular flow system and the depress- 
urization rate. For a pipe flow, in the beginning the 
bubble nucleation process is certainly dominated by 
wall heterogeneous nucleation. The process may be 
initially relatively slow, but it rapidly increases with 
increasing liquid superheat. According to Reocreux's 
experiments [8], this wall dominated vaporization 
zone was 20-120 cm in length. With relatively low 
liquid velocities in Reocreux's experiments, the char- 
acteristic time for generated vapor bubbles in this 
zone was of the order of a few tens of milliseconds. 
The length of the nucleation zone is a strong function 
of the flow velocity and the depressurization rate. For 
the BNL nozzle experiment [9] with similar pressure 
and temperature conditions as in Reocreux's exper- 
iment, the length of the nucleation zone was of the 
order of 1 cm only. This resulted from the higher flow 
velocities, depressurization rates and liquid super- 
heating. A reliable predictive method is not yet estab- 
lished for the width of the bubble nucleation zone 
in a flowing flashing system, nor are exact criteria 
proposed for the point of flashing inception. 

After the inception point, a local fluid pressure in a 
pipe decreases rapidly resulting in almost exponential 
increases of the liquid superheat. All vapor bubbles 
generated in tile nucleation zone flowing through this 
region of the channel will experience sharp drops in 
pressure resulting in explosive bubble growth. Jones 
and Zuber [10] have found that for the variable press- 
ure field where the pressure decays with time accord- 
ing to a power law f ' ,  the bubble radius varies as t "+ ~/2 
while the void fraction changes a s  t 3( '+ t/2). These very 
fast growing bubbles are accelerated more rapidly 
than the liquid phase. Thus after a short period of 
time the concentration profile becomes flatter, with 
C O approaching unity. Besides the flashing inception 
point, it is considered that this 'turning point' with 
Co=  1.0 is equally important lbr the thermo- 
hydraulics of the flashing, because it indicates the 
full migration of the bubbles to the core of the flow 
and sufficiently developed bubble profile. Vapor 
bubbles generated up to this turning point represent 
the majority of the bubble population which controls 
the vapor generation rate downstream in the chan- 
nel. Bubbles generated downstream will have shorter 
growth time and much narrower changes in the press- 
ure field, thus resulting in a lower partial void fraction. 
Saha et  al. [11] in their model for vapor generation 
in flashing flow through nozzles, chose the inception 

point as the channel location after which the down- 
stream nucleation can be neglected. 

Further downstream, bubbles continue to expand 
and accelerate with a tendency to agglomerate into 
slug bubbles and into a continuous vapor core toward 
the annular flow regime. The development of those 
regimes in flashing flow depends on many parameters, 
including the pressure, flow rate, depressurization 
rate, surface conditions, presence of dissolved gases 
or impurities and local surface irregularities which 
may serve as nucleation and/or cavitation sites. 

3. SOME PREVIOUS WORK 

In recent years, the problem of flashing flow has 
often been studied in relation to the critical flow prob- 
lem. Various models applicable to flashing with criti- 
cal flow have been proposed in the past. Reviews and 
descriptions of these models have been presented by 
Ardron and Furness [12], Jones and Saha [13, 14], 
Weisman and Tentner [15], Abdollahian et al. [16] 
and D'Auria and Vigni [17]. 

Alamgir and Lienhard [18] developed a semi- 
empirical correlation to predict the pressure under- 
shoot at the flashing inception point for a rapid static 
decompression of hot water. Jones [19] used their 
correlation and introduced a turbulence effect at the 
flashing onset point. Then he correlated Reocreux's 
[8] and Seynhaeve et al . 's  [20] data for straight pipes. 
Reocreux [8] used a criterion for the flashing inception 
based on the superheat at the location where the press- 
ure deviates from a linear axial profile. Our cal- 
culations [21] show that for Reocreux's experiments 
this inception point falls in the region where the local 
void fraction varies between 0.04 and 0.06. For these 
conditions, the generated vapor phase is still dis- 
tributed in the vicinity of the wall and the distribution 
parameter Co is much lower than 1. This indicates that 
the void distribution profile is qualitatively similar to 
the one for subcooled boiling [6]. 

Edwards [22] assumed that the vapor phase is 
always at saturation and that Plesset and Zwick's [23] 
model could be applied for bubble growth in the initial 
phase of the flashing. Two arbitrary parameters, 
namely, the time-delay in bubble nucleation and the 
number of bubbles per unit mass of liquid were cor- 
related using the data of Fauske [24] and Zaloudek 
[25]. The time-delay was of the order of 1 ms, and the 
bubble numbers calculated by Edwards were between 
108 and 10 ~ bubbles lb ~, i.e. about 2 x  105-2x 108 
bubbles cm- 3. 

Malnes [26] assumed that the presence of dissolved 
gases has an important role in the flashing. He also 
made the assumption of a constant number of bubbles 
per unit volume which is a function of a property 
group 

Nb = const, x g ~ -  . (1) 
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Instead of making this assumption about a constant 
number of bubbles, Rohatgi and Reshotko [27] used 
a kinetic theory and proposed an expression for the 
rate of production of vapor nuclei as 

wcr l 
= N h n m e X p [  kTf A (2) 

where m, W~ and k are the mass of the molecule, 
critical work required to create an unstable bubble 
nucleus and Boltzmann constant, respectively. In 
order to match Simoneau's experimental data [28], 
they recommended a value of ~b = 5 x 10-6 for the 
factor of heterogeneity and Nh = 1-2 nuclei cm 3 
for the number of heterogeneous nucleation sites. 
Studovic [29] also used a kinetic theory approach to 
describe initial conditions for active nuclei vapor 
phase generation and modified Jones and Zuber's 
model [10] for the convex shape of the pressure dis- 
tribution. He used his own experimental data from 
the converging-diverging nozzle, Reocreux's data [1] 
and data from the CANON experiment to correlate 
the vapor generation rate. 

Following the theory of homogeneous nucleation, 
and using a liquid compression model, Lienhard and 
co-workers [30] proposed an expression for the bubble 
number density for a high pressure static decom- 
pression of water given by 

2 
Nb -- (Jar +b ,lap) 3 (3) 

where Jar and Jap represent the Jakob number based 
on initial superheat and a flashing Jakob number, 
respectively. The quantity Z may be viewed as the 
bubble number density when an effective Jakob num- 
ber, Jar+ b Jap, has the value of unity. From various 
available experimental data they found that the mean 
value of 1.6 x 104 bubbles cm -3 describes the Z data 
within 25% scatter. They assumed that the number 
density Nb remained constant during the flashing 
developments. 

Wolfert [31] made an attempt to calculate the vapor 
generation, allowing relative movement between the 
vapor bubbles and the liquid. The effect of relative 
velocity has been incorporated in the interfacial 
heat transfer coefficient using Aleksandrov et al.'s 
expression [32] as 

h = x/(n~r t)~/3kf I1 
/ ['2 Vgj t'~ ] 

+ (4) 

with the values of Vgj = 0.15 m s-~ and the number 
of bubbles N =  5x  103 bubbles cm -3. Wolfert 
obtained the best agreement with Edwards and 
O'Brien's [33] standard experiment. 

To predict the vapor distribution in the BNL nozzle 
experiments, Saha [34] provided a justification for 
Wolfert's model and proposed a modified expression 
for the interfacial heat transfer coefficient with the 
relative bubble velocity as 

h ~//3kf [l_lf_(~'l V~/ll'2" 
4(g~ft ) 3 R b J (5) 

A good agreement with the BNL flashing exper- 
iment data of Wu et al. [9] was obtained by best-fit 
calculations of the number of bubbles. For  reported 
experiments, the number density of bubbles varies 
between 3 × 103 and 8 × 10 4 bubbles cm -3. 

In later papers, Jones and Shin [35, 36] proposed a 
wall cavity model to predict a flashing inception in the 
nozzles. Using Kocamustafaogullari and Ishii's [7] 
correlation for the site density, they attempted to find 
the bubble number density and the void at the nozzle 
throat (onset of flashing). 

4. BUBBLE N U M B E R  TRANSPORT EQUATION 

Kocamustafaogullari et aL [37] analyzed the prob- 
lem of nucleation site density in pool and convective 
boiling, and developed a bubble number density bal- 
ance equation. Following their procedure, the local 
bubble number density equation for flashing flow in 
a channel (Fig. 1) can be expressed as 

aNb 
- -  + V(NbVb) = ~bso - q~s~ (6) 

at 

where q~so, q~si and Vb are the bubble source term due 
to bulk nucleation, the bubble sink term due to bubble 
collapse or coalescence and the local bubble velocity, 
respectively. 

For most engineering applications equation (6) can 
be simplified by means of proper averaging. The 
advantage of such an approach is two-fold. First, the 
variables appearing in the final equation will have 
explicit definitions in terms of  averaged values. Conse- 
quently, it will be easy to compare predicted results 
with experimental data, which in two-phase flow are 
most often presented in terms of average values. Sec- 
ond, by means of  space averages it will be possible 
to reduce the number of space variables and to treat 
the problem as a one-dimensional one. 

In order to simplify equation (6) into a one-dimen- 
sional form and to express it by means of  averaged 
values of the variables, let us integrate the local bubble 
number density balance equation over the channel 
cross-sectional area, A~(z). Thus 

of-d'4+f;c~)V(N~vOdA 

The first integral on the left-hand side is transformed 
by means of the Leibnitz theorem over surfaces as 

a h" (Nbv¢) , ,  
ffAc,z, aNbdA-=~tf;~(z) (ft-.ft¢--) cl, 

(8) 
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FIG. 1. A schematic representation of the channel bubble flow for flashing model. 

whereas the second integral can be evaluated by means 
of the Gauss-Ostrogradskii divergence theorem over 
surfaces as 

V" (Nbvb) dA = ~z (Nbvb~) dA 
c(z) o(z) 

~ ~. (N~vu) 
+ - -  d~. (9) 

(~) (r~. n~) 

Substituting equations (8) and (9) in equation (7) and 
then rearranging, we obtain 

(10) 

where ~(z) is the intersection of the channel wall with 
the cross-sectional plane, ti the unit vector normal to 
the channel wall and ti t the unit vector normal to ~. 
The usual expression for the area averaged value of 
any quantity F is given by 

l F(x,y,z , t )dA.(l l )  <<F>>(z, t) = ~ o(,) 

The mean bubble velocity is defined by a weighted 
mean value given by 

Vb = (<NbVbz>>/<<Nb>>. (12) 

Equation (10) can be expressed in the following form : 

0 ~z (A~(<Nb> >t~b) (Ac<<Nb>>) + 

= -- ;(z) fiNb'(tl. (%ti¢)- V¢) dE + Ac((<~b~o>> - <<~si>>)- 

(13) 

The first term on the right-hand side represents the 
flux of bubbles generated from the active nucleation 
sites at the channel wall. In terms of the bubble 
nucleation site density N. and the frequency f of 
bubbles generated from a nucleation site, the bubble 
flux term can be given by 

--n°Nb(V b -¥~)  = N.f. (14) 

Substituting equation (14) into equation (13) one 
obtains 

~ (A~((Nb)>) + ~z(Ae((Nb))Vb) 

= - £ ( , )  ~ d~ + A c ( ( ( ~ . o ) ) -  ((q~,))) .  

(15) 

Equation (15) is the one-dimensional, area-aver- 
aged bubble number density transport equation, 
which is applicable for a channel with a variable cross- 
sectional plane. For the case of  flow in a pipe with a 
constant cross-sectional area, it can be simplified to 
the form 

~((~tb))  + ~z (((Nb))~b) 

= <(~w > -~- < <(~. >> -- < <(~ai> >. (16) 

The perimeter-averaged bubble generation rate from 
active nucleation sites at the channel wall is given by 

1 ; (N.>f~ 
(q~w> = ~ (N, f )  de = Ac (17) 

with the assumption that the frequency f is uniform 
around the channel perimeter. 

Bubble nucleation in the bulk liquid can occur 
either as homogeneous or heterogeneous nucleation. 
The classical homogeneous nucleation theory assumes 
that a bubble is formed in the bulk liquid by the 
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vaporization of molecules of the liquid into a cavity. 
This cavity may be considered as any space within the 
liquid phase unoccupied by liquid molecules, thus it 
can be either empty or occupied by vapor. According 
to the Volmer-D6ring Zeldovich theory [38], the 
homogeneous nucleation rate can be expressed by 

Jho = p~Av Bexp[-Wc~/kT]  (18) 

where Av and B are Avogadro's number and fre- 
quency with which a molecule within the liquid inter- 
acts with its neighbors. 

Foreign particles and dissolved gas normally pro- 
vide ample nuclei to act as centers of vapor formation. 
The vapor generation from pre-existing nuclei in the 
liquid is usually called heterogeneous nucleation. The 
presence of particles and dissolved gas reduces the 
liquid superheat required to maintain a bubble in 
unstable equilibrium. The heterogeneous nucleation 
rate can be expressed in a similar form as 

Jhe = Of AV B exp [-- W~/p/kT] (19) 

where q9 is the factor of heterogeneity. This factor 
modifies the critical work needed to create a cavity for 
a heterogeneous nucleation case. In the papers by 
Ward et al. [39] and Forest and Ward [40] it has been 
shown that the presence of dissolved gas can initiate 
nucleation even at temperatures below the saturation 
corresponding to the local liquid pressure. Unfor- 
tunately, for water all those theories yield extremely 
high liquid superheats, especially at lower pressure. 
As stated by Skripov [41], it is possible that for some 
reason the classical theory itself is not applicable to 
water at P < 0.5 p~. 

The third term on the right-hand side of equation 
(16), the sink term ((q~i)) ,  takes care of the reduction 
in bubble number density due to the coalescence of 
bubbles into larger bubbles or bubble collapse. The 
coalescence is assumed to be insignificant up to the 
void fraction ~c0 corresponding to the point with a 
reasonably homogeneous distribution of a vapor 
phase in the bulk liquid, i.e. the point where the dis- 
tribution parameter Co reaches unity. For the flow 
conditions in the experiments of Reocreux [8] and 
BNL [9] the distribution parameter Co has a value of 
1.0 for the void fraction c~ in the vicinity of 0.1 accord- 
ing to the drift-flux correlation [6]. Certainly this 
assumption can be extended up to the void fraction 
of 0.3 beyond which the flow regime transition to the 
slug or churn-turbulent flow occurs. 

5. VAPOR GENERATION MODEL 
FORMULATION 

For  a steady-state flow equation (15) can be re- 
written as 

~z(A~NbVb) = (~bw+~bho +q~h¢--$~,)Ac. (20) 

Here qgw, q~ho, ~bh~ and q~i are the sources due to wall, 

homogeneous and bulk heterogeneous nucleations 
and the sink due to coalescence or collapse, respec- 
tively. Furthermore, various averaging symbols are 
omitted for simplicity. The sink term may be neglected 
for the beginning of a flashing flow, thus after an 
integration from zs~t to z, one obtains 

AeNb(7~)Vb('2)=flAc(d)w+flpho+~)he)d2., (21) 

Here z~at is the point at which the liquid reaches the 
saturation condition (see Fig. 1). Equation (21) can be 
solved for the bubble number densities at the flashing 
inception point Nb,zo b and the turning point Nb.z~,, , 

respectively, i.e. 

1 f:ob 
Uu.~o~ - A ~ v ~  . . . .  ~,, A~(q~w +q~o +q~o) dz (22) 

!- f:"°,4~(~w+~o+~o)d~. (23) Nu'z¢° AcVb.z% 3-" 

It is noted that at the turning point the distribution 
parameter Co reaches 1, thus a considerable number 
of bubbles migrated to the central part of a flow chan- 
nel. The wall nucleation rate ~bw may be expressed by 
using the correlation developed by Kocamustafa- 
ogullari and Ishii [7, 37] for nucleation site density. 
They found that the wall nucleation site density can 
be correlated in dimensionless form as 

N*s = Re* 4.4f(p,). (24) 

The non-dimensional site density is defined by 

N*~ = N,,D~ (25) 

and the non-dimensional critical cavity radius by 

I~ 2o Tsat 
R* - (Da/2) with R~ - (Tw-T~at)pghrg 

(26) 

where Dd is the bubble departure diameter. The 
property function is correlated in terms of the density 
ratio as 

(/~pX) 3"12 f Apx~ 4.13 
f (p*)  = 2.157 x 1 0  - 7  11 + 0 . 0 0 4 9 - - J  . \Pg/ \ Pg/ 

(27) 

Originally the correlation was developed for pool 
and convective boiling, and the data were correlated 
by using different effective superheat for those two 
types of boiling. Our calculations show that this cor- 
relation can be generalized even for the flashing flow 
by introducing the appropriate superheat in the 
boundary layer where the bubble is generated. For 
convective boiling, the effective liquid superheat to 
which the nucleation sites and growing bubbles at the 
wall are exposed fluctuates between (Tw-  Ts~,) and 0 
due to the nucleation, evaporation and liquid con- 
vection. Therefore, in the sense of averaged values, 
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the mean superheat is of the order of ATsup.~ ~- AT/2. 
However, in the correlation development for the 
nucleation site density, the apparent superheat A T has 
been used. On the other hand, in flashing flow, the 
bulk liquid is superheated. Thus the effective super- 
heat for nucleation is AT, because there is always 
sufficient supply of superheated liquid at the wall. The 
bubbles are initiated from smaller wall cavities and the 
bubbles grow much faster than in convective boiling. 
Thus it is postulated here that the active nucleation 
site density correlation obtained for the pool and 
forced convective boiling could be used to predict the 
active nucleation site density in flashing with an effec- 
tive average superheat ATsup,r= ATsu p rather than 
AT~,p,~. Practically this will result in smaller critical 
radii of cavities. Thus the effective nucleation site den- 
sity for flashing flow is given by modifying equation 
(24) as 

1 ( 20"Tsa t )-4.4 
~ 2 " T r ~  h ? f(p*). (28) N*~ - ( O d 2 )  t ~ - s~op~ ~ 

Jones and Shin [35] reported the values for the mini- 
mum critical cavity sizes from their analytical wall cav- 
ity model. The present calculations, using the super- 
heat ATsup,f, and the effective critical cavity size 
expression by Kocamustafaogullari and Ishii [37], are 
within a few percent of theirs. A bubble departure 
diameter Dd, necessary to obtain an active nucleation 
site density N,, is determined by Kocamustafa- 
ogullari's model [42] given by 

Od = 2.64 X 10-50 \9App,/ \~-g/  " (29) 

To estimate the frequency of bubble departures the 
expression given by Zuber [43] is adopted here, thus 

O~f = 1.18 [~Y(Ps--P')I t/4. (30) 
L Pf J 

Using the expressions given by equations (17) and 
(25)-(30) one can find the bubble nucleation rate at 
the wall. Furthermore, by integrations given by equa- 
tions (22) and (23) it is possible to determine the 
bubble number densities at the location of  flashing 
inception and the turning point, i.e. where the dis- 
tribution parameter Co has the value of ~ 1.0. Apply- 
ing the bubble growth law in the variable pressure 
field [10] it is possible to estimate a bubble radius by 

+ 2K" ja,~----~ [~/(f~t)--D(x/(t~t))]} (31) 

where f~ and D(f~t) represent time constants for 
pressure variation and the Dawson integral. With 
the idealization that all bubbles are spherical, the 
void fraction can be given by 

ct(t) = Nb(Z)gnRa(t) (32) 

if the bubbles have the uniform size Rb(t). However, 
in most applications bubble sizes are not uniform 
due to the differences in residence times. This effect is 
considered below. 

At an early stage of the steady-state flashing process 
in a channel, the wall nucleation due to fluid superheat 
caused by the pressure drop controls the process. Thus 
in equation (20), the wall nucleation source, ~w, domi- 
nates the term on the right-hand side. The sink term, 
~bsi, due to the bubble collapse or coalescence is basi- 
cally zero in bulk superheated liquid and for very 
small bubbles which are in the early stages of bubble 
growth. The bulk homogeneous nucleation source ~bho 
is negligible because the liquid superheat is relatively 
low. Thus the preferred site nucleation such as the 
wall nucleation should be much more significant than 
~bho. The bulk heterogeneous nucleation source ~he 
can be significant only if a considerable amount of 
dissolved gas is present in the liquid. For the present 
study it is assumed that the effect of dissolved gas is 
negligible on the nucleation process. 

From the above considerations, the bubble number 
transport equation becomes 

a 
Oz (AcNbVb) ~ AcOw. (33) 

By integration from the boiling initiation point, Z~at, 
to Zl, one obtains 

1 i z, Nb(2"l) = Ac(Zi)Vb(Zl) dpwA c dz. (34) 
~ t  

Here the number density Nb(Z~) includes the con- 
tributions from all the bubbles nucleated upstream of 
point zl. 

The local contribution can be considered by intro- 
ducing a new parameter nb(Zl, Z) which is defined by 

4~.(z)ao(z) 
nb(z,, Z) -- Ac(Z,)Vb(ZO" (35) 

This parameter represents the contribution from the 
nucleation sites at location z, i.e. a number of  bubbles 
per unit length of a channel originating at z and 
arriving at z~. 

Using the Lagrangian description, the void fraction 
at z can be given by 

L ~(zt) = ~rcR3(t(z))nb(z,, z) dz. (36) 
t 

The time scale following the bubble can be calculated 
by integrating the relation 

dz = Vb(Z) dt. (37) 

For simplicity, all the bubbles within a cross section 
are assumed to be flowing with the average velocity 
Vb(Z). Then 
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f ~, dz (38) 
t = Vb(Z)" 

In the above formulation the bubble average vel- 
ocity Vb is unknown. The expression for Vb can be 
obtained from the continuity relations. The vapor 
continuity equation is given [1, 6] by 

Oz (Ac°:P~Vb) = rgAc (39) 

where F~ is the vapor mass source term. On the other 
hand, the volumetric flux equation is given by 

Here j is given by j = ~¢Vb+ (1 --U)Vr. Under a steady- 
state condition, Fg can be eliminated between equa- 
tions (39) and (40) after integrations to yield 

OZpgVb = PgP~f (41) 
j--vnAc(z~t)/Ac Ap 

where vn is the liquid velocity at the boiling initiation 
point z = Zs,t. 

Furthermore, the relative velocity correlation can 
be given by the drift flux formulation [6]. In terms of 
the vapor velocity and the total volumetric flux, it is 
given by 

vb = Co j +  ( ( V ~ ) ) .  (42) 

Here Co is the distribution parameter which accounts 
for the slip due to phase and velocity distributions, 
and ( (V~) )  is the averaged local drift velocity for the 
local slip between phases. Both Co and ( ( V ~ ) )  should 
be expressed by a constitutive relation. For the region 
near the boiling initiation point, Ishii [6] recommends 

Co = ( l . 2 - 0 . 2 x / ( p J p r ) ) ( 1 - e  ,8,). (43) 

It is noted that this expression has been obtained 
for a standard boiling flow in a heated pipe and not 
particularly for a flashing flow. Since the boiling pro- 
cesses are different, the exponent in equation (43) can 
differ from the one given there. However, the trend 
indicated by equation (43) is correct for a flashing 
flow also, thus as a first approximation, equation (43) 
is used here. For a vertical churn-turbulent bubbly 
flow, the local drift velocity is given by 

= 2 f  1/4 ( ( e , j ) )  ~/ ~ - }  . (44) 

However, the local drift velocity strongly depends on 
two-phase flow regimes and flow direction, thus a 
careful treatment of this term is necessary [6]. 

Equations (41) and (42) give the expression for Vb 
in terms of the void fraction, since the total volumetric 
flux can be eliminated between the two equations. 
Thus by using the bubble growth model such as equa- 
tion (31), the solution for the void fraction can be 
obtained from equation (36) with equations (38), (41) 

and (42). The above formulation is used to calculate 
the void fraction in the region where the wall 
nucleation effect is important. 

However, at a certain point the effect of the new 
wall nucleations on the void fraction become rapidly 
insignificant in the downstream section because of 
the increased number density and a relatively large 
average bubble size. In this bubble expansion region, 
some simplication can be made by setting the bubble 
source term q~w to zero. In the present analysis it has 
been assumed that downstream of the location in the 
channel where the distribution parameter Co reaches 
unity the contribution of the newly generated bubbles 
from wall nucleation may be neglected for the void 
fraction calculation. 

The bubble growth within a flow field is larger 
than the one for a stationary case. An approximate 
theoretical result to account for the relative velocity 
effect on the bubble growth has been obtained by 
Aleksandrov et al. [32]. This can be given as a modifi- 
cation to the stationary case in the following form : 

dt-/~r~0 = \ dt/vr=0 3 RbJ (45) 

where the case with vr = 0 denotes the stationary 
bubble growth rate. This can be given, for example, 
by the Jones-Zuber [10] model, equation (26) for a 
stationary bubble. 

The result of Aleksandrov et al. [32] has been 
applied by several researchers to study bubble growth 
rates in flowing systems. In order to use the above 
result the local relative velocity should be specified. 
Florschuetz et al. [46] and Wolfert [31] assumed a 
linear relation between the relative velocity and the 
bubble radius, thus 

U r = const. × Rb. (46) 

On the other hand, Saha [34] used a local bubble 
drift velocity ((V~i)). For relatively slow processes 
of depressurization of flow in a pipe or a nozzle, the 
average local drift velocity ( ( V  g j ) )  may be assumed 
to be constant for relatively large bubbles, However, 
it is also possible to use more complicated correlations 
based on the drift-flux model [6]. The average local 
relative velocity can be given approximately by 

((VrJ))  (47) 
U r  - -  1 - - 0 ~  

which can be used in equation (45) together with the 
correlation for the drift velocity. 

6. C O M P A R I S O N S  WITH THE EXPERIMENTS 

A computer program ULYSSYS was developed 
to solve the equations of the model. The system of 
equations is solved by using the bubble number 
density, the void fraction and the bubble growth equa- 
tions (31) and (34)-(36), together with the nucleation 
site density expressions (24)-(27), and bubble relative 
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FIG. 2. Bubble number density distribution along Reocreux's test channel. 

velocity (47). These are supplemented by the specified 
system geometry and necessary properties. The time 
is eliminated by a simple time-space coordinate trans- 
formation using the vapor velocity. The result is a set 
of three algebraic equations for ~t, N b and Rb which 
can be solved successively by standard numerical tech- 
niques. The present model has been applied to steady- 
state flashing experiments conducted in vertical chan- 
nels. In the present study, an attempt was made to 
compare the model predictions with the experimental 
data of Reocreux [8] and BNL [9]. The test channel 
[8] was made in two parts. The lower part consisted 
of a stainless steel tube with an internal diameter of 
20 mm and with a length of 2160 mm. The upper part 
made up the test channel proper. It consisted of a 
cylindrical part  with an internal diameter of 20 mm 
followed by a divergent section with a peak angle of 
7 ° and a length of 327 mm and a last cylindrical part 
with a diameter of 60 mm. Initially subcooled water 
at low pressures (0.21-0.34 MPa) entered the test 
section at the bottom and flowed upwards. As the 
pressure decreased, flashing began and two-phase 
mixture flowed through the cylindrical and the diverg- 
ing part of the channel. Pressure and area-averaged 
void fractions were measured along the length of the 
test section. The accuracy of the pressure measure- 
ment was within 1% of the reading and that for the 
void fraction was within 0.05. The accuracy for the 
fluid temperature measurement was within 0.1 °C [11]. 

Some results of the present model predictions of 
bubble number density distribution along Reocreux's 
channel for run 403 are shown in Fig. 2 [44]. It can 
be noticed that the main contribution of void coming 
from the bubbles generated in the section between zsa, 

and net vapor generation location. The contribution 
of bubbles generated downstream is much smaller, 
due to the differences in residence time. 

The above model formulation is used to calculate 
the void fraction in the region where the wall 
nucleation effect is important. However, at a certain 
point the effect of the new wall nucleations on the 
void fraction becomes rapidly insignificant in the 
downstream section because of the increased number 
density and a relatively large average bubble size. In 
this bubble expansion region, some simplification can 
be made by setting the bubble source term ~w to 
zero. In the present analysis it has been assumed that 
downstream of the location in the channel where the 
distribution parameter Co reaches unity the con- 
tribution of the newly generated bubbles from wall 
nucleation may be neglected. For  the void fraction 
calculation the results of the comparisons between the 
present model predictions and Reocreux's few exper- 
imental trials are given in Figs. 3-7. The model pre- 
dictions are in fairly good agreement with Reocreux's 
data up to the critical flow plane (throat) in his test 
channel. Downstream of the throat (Zco,= 1351 ram) 
the model predicts voids lower than experimental 
values. One of the reasons is probably the presence of 
secondary flows in the vicinity of the throat. Reocreux 
reported [8] that the radial distribution of  the void in 
the diverging zone indicates that the two-phase mix- 
ture does not expand completely. The same phenom- 
enon was observed in the experiments with visual- 
ization using the glass test channel. In the same 
figure are also shown results from the model with the 
assumption that the two-phase jet leaves the throat 
without any expansion, and that the space between 
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FIG. 4. Comparison between the present model prediction 
and Reocreux's experimental trial 403. 

the jet and channel wall is filled with vapor phase. It 
can be seen from those figures that the calculated void 
profile is very close to the experimentally observed 
one up to the characteristic length of  (2 ~ 3) Dt~,he 
from the throat. 

Experimental data lot  BNL nozzle run 137 are given 
in Fig. 8. Because of  much higher velocities than in 
Reocreux's case, the presence of  roll waves immedi- 
ately after the throat (314.8 mm) have even more 
influence on the void distribution in the diverging part 
of  the channel. 

Comparisons of  lhe model with the data show 
that the model  based on the nucleation site density 
correlation appears to be acceptable to describe vapor 
generation in the flashing flow. For  the limited data 
examined here, the comparisons show rather satisfac- 
tory agreement without using a floating parameter 
to adjust the model. 
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FIG. 5. Comparison between the present model prediction FIG. 7. Comparison between the present model prediction 
and Reocreux's experimental trial 405. and Reocreux's experimental trial 440. 
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FIG. 8. Comparison between the present model prediction 
and BNL experimental run 137. 

7. CONCLUSIONS 
A new model  for flashing flow based on wall 

nucleations is proposed here and model  predictions 
are compared with some experimental data. The 
bubble number  density and volumetric flux trans- 
port  equations are used. Thus it was possible to avoid 
the usually made assumption with constant bubble 
number density. Also, a vapor  generation rate equa- 
tion is derived. A correlation for the nucleation site 
density is adopted for application in the flashing flow. 
The model  predictions compared with the exper- 
imental data of  Reocreux and BNL showed that 
satisfactory agreement could be obtained with the 
present model  without any floating parameter to 
adjust the data. 
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DENSITE NUMERIQUE DE BULLES ET FORMATION DE VAPEUR DANS 
L'ECOULEMENT AVEC DEPRESSURISATION 

R6sum6---Le ph6nom6ne de vaporisation reli6 ~. la d6charge d'un liquide sous pression dans un envi- 
ronnement ~. basse pression est tr6s important dans des syst6mes industriels comme les r6acteurs nucldaires 
et les r6acteurs chimiques. Un nouveau mod61e de ce m6canisme est propos6 fi partir de la th6orie de la 
nucl6ation, du mod61e de transport des bulles. Pour calculer la densit6 num6rique des bulles, on utilise 
l'6quation de transport avec une source distribu6e sur des sites de nucl6ation fi la paroi. Les pr6dictions 
du mod61e en terme de fraction de vide sont compar6s avec les donn6es exp6rimentales Moby Dick et BNL. 
Au moins pour les conditions exp6rimentales consid6r6es ici, la pr6diction m6caniste du ph6nom6ne de 

vaporisation par d6tente est possible/t partir du modble de nucl6ation pari6tale. 

BLASENDICHTE UND DAMPFBILDUNG BEI DER ENTSPANNUNGSVERDAMPFUNG 

Zusammenfassung--Das Phfinomen der Entspannungsverdampfung beim pl6tzlichen 13berstr6men unter- 
kfihlter Fliissigkeit von einem hohen zu einem niederen Druckniveau ist fiir verschiedene industrielle 
Systeme wie Kernreaktoren und chemische Reaktoren sehr wichtig. Es wird ein neues Modell f/Jr die 
Entspannungsverdampfung vorgeschlagen, welches auf der Theorie der Blasenentstehung an einer Wand, 
einem Blasenwachstumsmodell und einem Drift-flux-Modell fiir die Blasenbewegung beruht. Zur Bere- 
chnung der Blasendichte wird die Transportgleichung fiir die Blasen mit einer verteilten Quelle fiir die 
Wandkeimstellen benutzt. Die Berechnungen des Dampfgehalts mit dem Modell werden mit exper- 
imentellen Daten von Moby Dick und BNL verglichen. Die Ergebnisse zeigen, daB--zumindest ffir die 
hier betrachteten experimentellen Bedingungen~ie  mechanistische Betrachtung der Entspan- 
nungsverdampfung m6glich ist, die auf dem hier vorgestellten Modell f/Jr die Blasenbildung an einer 

Wand beruht. 
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qHC3IOBA.q IUIOTHOCTb  II~3blPI~KOB H HAPOOBPA3OBAHHE HPH T E q E H H H  
BCKHFIAIOll][E~ )KH~I~OCTH 

A~oTsmm----,q~eH~e Bcmsnam~ npx screqemm xaqa.~HO He~lorpeTog ~mwm~ocrx ~ cocy~a nr~cozoro 
] l a ~ e H ~  B cl)e ~ c HMZmSM ~U~tnemSeM RaCTO ~'TpeqaeTcl n Tam~ n p o b n . n n ~ e ~  CHCTeMaX, m ~  
HanpxMep, aToMm~e x x m ~ e c m s e  pearropM, l'lpe~noxeHa HoBa~ MOSlem, npoilecca ~ m m a m ~ ,  n 
ocHosy XOTOpOg nonoxeH~ Teopma 3apo~r~em~ ny3Mpbxon Ha CTeH~e, MO]leJIb pocTa ny3MphKOB H 
MO~lenb KX ]Ipegdlm. ~{n~ pacqeTa ~mCaOBOit n~OTHOCTX nyzblpbxon xcnon~3yeTcM ypanHemse Kx nepe- 
noca c pacnpelleJmHHMM ~CTO,m~OM 3apowjleH~ Ha cTe~e. PezyJn, TaT~ pac~eTon, npeJlcTa~emsM¢ 
qepe3 o6~eMH~e napoco~lepxam~, cpaBImmUOTCl C 3KCHepHMerI'aJIbHMMII ]IaHHMMn. I~oKa3aHO, ~rl'o 
no rl0ai~e~ Mepe ~ paccMaTpHmteMMX 31¢cnepm~eHTaJn,ln,Zx yc,.nOB~1~ c noMoI//bIo npe~jlaraeMoR 

Mo~leJm MOXHO npe~ic'xa3aTb nO3Hm~HOneHHe ~ n e H ~  BCm~nam~. 


