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Abstract—A phenomenon of flashing related to discharging initially subcooled liquid from a high pressure
containment into a low pressure environment is very important in several industrial systems such as
nuclear reactors and chemical reactors. A new model for the flashing process is proposed here based on
the wall nucleation theory, bubble growth model and drift-flux bubble transport model. In order to
calculate the bubble number density, the bubble number transport equation with a distributed source from
the wall nucleation sites is used. The model predictions in terms of the void fraction are compared with
Moby Dick and BNL experimental data. This result indicates that, at least for the experimental conditions
considered here, the mechanistic prediction of the flashing phenomenon is possible, based on the present
wall nucleation model.

1. INTRODUCTION

A PROBLEM of discharging an initially subcooled liquid
from a high pressure condition into a low pressure
environment is quite important in safety analyses of
nuclear power, chemical and process plants. The
dynamics of discharge and critical flow phenomena
for single-phase fluids are well understood and accept-
able analytical models are available. A number of
problems arise for situations in which two-phase flow
is involved. This is because the mechanical and
thermal non-equilibrium effects as a consequence of
liquid flashing may play an important role in the
process.

In predicting two-phase flow transients, the inter-
facial transfer terms are among the most essential
factors in modeling. These interfacial transfer terms
in two-fluid models specify the rate of phase change,
momentum exchange and heat transfer at the interface
between phases. In the two-fluid model formulation
[1-4], the transport processes of each phase are ex-
pressed by their own balance equations. Therefore,
it is expected that the model can predict more de-
tailed changes and phase interactions than a mixture
model such as the drift-flux model [5, 6).

However, the weakest links in the two-fluid model
are the constitutive equations for the interfacial inter-
action terms. The difficulties arise due to the com-
plicated motion and geometry of the interfaces in a
general two-phase flow. The interfacial transfer terms
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are strongly related to the interfacial area and to the
local driving mechanisms, such as the degree of tur-
bulence near the interfaces [1]. Basically, the inter-
facial transport of mass, momentum and energy is
proportional to the interfacial area concentration and
to a driving force. This area concentration defined
as the interfacial area per unit volume of mixture,
characterizes the kinematic effects ; therefore, it must
be related to the structure of the two-phase flow field.
On the other hand, the driving forces for the inter-
phase transport characterize the local transport mech-
anism, and they must be modeled separately. Basic
macroscopic parameters related to the structure of
two-phase flows, particularly of a dispersed (bubbly
or droplet) flow, are the void fraction, particle number
density, interfacial area concentration and the particle
shape factor. From geometric considerations it is dem-
onstrated that the particle number density is a key
parameter in determining the interfacial area con-
centration but it has not been sufficiently investigated
in the literature [7].

Realizing the significance of the bubble number
density as an important parameter for predicting the
interfacial area in a two-phase flow a model for the
flashing process is proposed here based on the wall
nucleation theory and the bubble growth model. In
order to calculate the bubble number density, the
bubble number transport equation is used.

2. FLASHING PHENOMENA

Flashing can be considered as a continuous process
which occurs in several stages. Generally speaking,
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NOMENCLATURE

A, cross-sectional area By

Av Avogadro’s number v,

B frequency of interaction of a molecule \ 2
with its neighbors W,
(= kT/Planck’s constant)

C, distribution parameter z
bubble departure diameter Zep
mass velocity Z¢

gravity
interfacial heat transfer coefficient
hy, latent heat of vaporization

Dy

f bubble generation frequency
G

g

h

J frequency of nucleation events per unit
volume

J volumetric flux

Ja, flashing Jakob number based on

depressurization superheat

Jar  Jakob number based on initial superheat

K, sphericity correction factor

k Boltzmann constant

ke thermal conductivity of liquid

m mass of the molecule

N rate of production of vapor nuclei
Na

Ny

active nucleation site density at wall

bubble number density

N, number of heterogeneous nucleation sites

N¥* dimensionless active nucleation site
density

A unit vector normal to the channel wall

directed away from the fluid

cross-sectional plane and directed
away from the fluid

Ry bubble radius

R, critical cavity size

R, initial bubble radius

R}  dimensionless critical cavity radius,
R./(Dyf2)

T temperature

T: bulk fluid temperature

T..  saturation temperature

T, wall temperature

AT,, wallsuperheat, T,— T,

AT, effective superheat for nucleation
under flashing

AT, effective superheat for nucleation
under normal or subcooled boiling

t time

Ve drift-lux velocity

v volume

vy local bubble velocity

A unit vector normal to £ located in the

0

mean bubble velocity

bubble relative velocity

channel wall velocity

critical work required to create an
unstable bubble nucleus

axial coordinate

axial coordinate at point of flashing
incipient

axial coordinate at point where C,
reaches 1.0.

Greek symbols

o void fraction
o thermal diffusivity of liquid
I, vapor mass source rate
0 contact angle
14 wetted (or heated) perimeter
p density
p* non-dimensional density difference,
Ap/p,
Ap  density difference between liquid and
vapor
g surface tension between liquid and vapor
¢ heterogeneity correction factor for
critical work for bubble nucleation
¢rn.  heterogeneous bulk liquid nucleation
rate
¢no  homogeneous bulk liquid nucleation rate
P bulk sink rate due to recondensation
¢,  bubble source rate due to bulk liquid
nucleation
¢,  bubble nucleation rate from active
cavities
Q time constant for pressure variation.
Subscripts
b bubble
eb ebullition
f liquid phase
g vapor phase
he heterogeneous
ho homogeneous
w wall.
Superscript
* dimensionless quantities.
Averages
{{>> area average
{> line average.




Bubble number density and vapor generation in flashing flow

flashing occurs when liquid is brought to the region
where the local pressure is below the saturation press-
ure corresponding to the liquid temperature. In a
flowing system, such as the flow in a pipe or in a
nozzle, a depressurization is caused by the friction or
acceleration pressure drop which brings the liquid
from initially subcooled to saturated conditions. With
further decreases in the pressure, liquid becomes
superheated and the nucleation process starts. The
degree of superheat required for starting of the
nucleation may depend on the flow and surface con-
ditions for a particular flow system and the depress-
urization rate. For a pipe flow, in the beginning the
bubble nucleation process is certainly dominated by
wall heterogeneous nucleation. The process may be
initially relatively slow, but it rapidly increases with
increasing liquid superheat. According to Reocreux’s
experiments [8], this wall dominated vaporization
zone was 20-120 cm in length. With relatively low
liquid velocities in Reocreux’s experiments, the char-
acteristic time for generated vapor bubbles in this
zone was of the order of a few tens of milliseconds.
The length of the nucleation zone is a strong function
of the flow velocity and the depressurization rate. For
the BNL nozzle experiment [9] with similar pressure
and temperature conditions as in Reocreux’s exper-
iment, the length of the nucleation zone was of the
order of 1 cm only. This resulted from the higher flow
velocities, depressurization rates and liquid super-
heating. A reliable predictive method is not yet estab-
lished for the width of the bubble nucleation zone
in a flowing flashing system, nor are exact criteria
proposed for the point of flashing inception..

After the inception point, a local fluid pressure in a
pipe decreases rapidly resulting in almost exponential
increases of the liquid superheat. All vapor bubbles
generated in the nucleation zone tlowing through this
region of the channel will experience sharp drops in
pressure resulting in explosive bubble growth. Jones
and Zuber [10] have found that for the variable press-
ure field where the pressure decays with time accord-
ing to a power law ¢, the bubble radius varies as £"* /2
while the void fraction changes as ** /2, These very
fast growing bubbles are accelerated more rapidly
than the liquid phase. Thus after a short period of
time the concentration profile becomes flatter, with
C, approaching unity. Besides the flashing inception
point, it is considered that this ‘turning point’ with
Cy=1.0 is equally important for the thermo-
hydraulics of the flashing, because it indicates the
full migration of the bubbles to the core of the flow
and sufficiently developed bubble profile. Vapor
bubbles generated up to this turning point represent
the majority of the bubble population which controls
the vapor generation rate downstream in the chan-
nel. Bubbles generated downstream will have shorter
growth time and much narrower changes in the press-
ure field, thus resulting in a lower partial void fraction.
Saha et al. [11] in their model for vapor generation
in flashing flow through nozzles, chose the inception
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point as the channel location after which the down-
stream nucleation can be neglected.

Further downstream, bubbles continue to expand
and accelerate with a tendency to agglomerate into
slug bubbles and into a continuous vapor core toward
the annular flow regime. The development of those
regimes in flashing flow depends on many parameters,
including the pressure, flow rate, depressurization
rate, surface conditions, presence of dissolved gases
or impurities and local surface irregularities which
may serve as nucleation and/or cavitation sites.

3. SOME PREVIOUS WORK

In recent years, the problem of flashing flow has
often been studied in relation to the critical flow prob-
lem. Various models applicable to flashing with criti-
cal flow have been proposed in the past. Reviews and
descriptions of these models have been presented by
Ardron and Furness [12], Jones and Saha [13, 14],
Weisman and Tentner [15], Abdollahian et al. [16]
and D’Auria and Vigni [17].

Alamgir and Lienhard [18] developed a semi-
empirical correlation to predict the pressure under-
shoot at the flashing inception point for a rapid static
decompression of hot water. Jjones [19] used their
correlation and introduced a turbulence effect at the
flashing onset point. Then he correlated Reocreux’s
[8] and Seynhaeve er al.’s [20] data for straight pipes.
Reocreux [8] used a criterion for the flashing inception
based on the superheat at the location where the press-
ure deviates from a linear axial profile. Our cal-
culations [21] show that for Reocreux’s experiments
this inception point falls in the region where the local
void fraction varies between 0.04 and 0.06. For these
conditions, the generated vapor phase is still dis-
tributed in the vicinity of the wall and the distribution
parameter C,is much lower than 1. This indicates that
the void distribution profile is qualitatively similar to
the one for subcooled boiling [6].

Edwards [22] assumed that the vapor phase is
always at saturation and that Plesset and Zwick’s [23]
model could be applied for bubble growth in the initial
phase of the flashing. Two arbitrary parameters,
namely, the time-delay in bubble nucleation and the
number of bubbles per unit mass of liquid were cor-
related using the data of Fauske [24] and Zaloudek
[25]. The time-delay was of the order of 1 ms, and the
bubble numbers calculated by Edwards were between
10® and 10'" bubbles Ib~ ', i.e. about 2 x 10°-2 x 108
bubbles cm ™.

Malnes [26] assumed that the presence of dissolved
gases has an important role in the flashing. He also
made the assumption of a constant number of bubbles
per unit volume which is a function of a property
group

N, = (const. xg%) . D
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Instead of making this assumption about a constant
number of bubbles, Rohatgi and Reshotko [27] used
a kinetic theory and proposed an expression for the
rate of production of vapor nuclei as

. 20 W
N=NhnrmexP[-ka¢J @)

where m, W, and k are the mass of the molecule,
critical work required to create an unstable bubble
nucleus and Boltzmann constant, respectively. In
order to match Simoneau’s experimental data [28],
they recommended a value of ¢ = 3x107° for the
factor of heterogeneity and N, = 1-2 nuclei cm~?
for the number of heterogeneous nucleation sites.
Studovic [29] also used a kinetic theory approach to
describe initial conditions for active nuclei vapor
phase generation and modified Jones and Zuber’s
model [10] for the convex shape of the pressure dis-
tribution. He used his own experimental data from
the converging—diverging nozzle, Reocreux’s data [1]
and data from the CANON experiment to correlate
the vapor generation rate.

Following the theory of homogeneous nucleation,
and using a liquid compression model, Lienhard and
co-workers [30] proposed an expression for the bubble
number density for a high pressure static decom-
pression of water given by

Z

Mo = Gay 15 7a)’ 3

where Jar and Ja, represent the Jakob number based
on initial superheat and a flashing Jakob number,
respectively. The quantity Z may be viewed as the
bubble number density when an effective Jakob num-
ber, Jar+b Ja,, has the value of unity. From various
available experimental data they found that the mean
value of 1.6 x 10* bubbles cm ~* describes the Z data
within 25% scatter. They assumed that the number
density N, remained constant during the flashing
developments.

Wolfert [31] made an attempt to calculate the vapor
generation, allowing relative movement between the
vapor bubbles and the liquid. The effect of relative
velocity has been incorporated in the interfacial
heat transfer coefficient using Aleksandrov et al’s
expression [32] as

)
o) 3R,

with the values of V,; =0.15m s™' and the number
of bubbles N =5x10° bubbles cm~% Wolfert
obtained the best agreement with Edwards and

O’Brien’s [33] standard experiment.
To predict the vapor distribution in the BNL nozzle
experiments, Saha [34] provided a justification for
Wolfert’s model and proposed a modified expression

for the interfacial heat transfer coefficient with the
relative bubble velocity as
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h= \/3./(f[1 + G @:Il/z‘ 5)
V(o) 3R

A good agreement with the BNL flashing exper-
iment data of Wu er al. [9] was obtained by best-fit
calculations of the number of bubbles. For reported
experiments, the number density of bubbles varies
between 3 x 10° and 8 x 10* bubbles cm >,

In later papers, Jones and Shin [35, 36] proposed a
wall cavity model to predict a flashing inception in the
nozzles. Using Kocamustafaogullari and Ishii’s [7]
correlation for the site density, they attempted to find
the bubble number density and the void at the nozzle
throat (onset of flashing).

4. BUBBLE NUMBER TRANSPORT EQUATION

Kocamustafaogullari et al. [37] analyzed the prob-
lem of nucleation site density in pool and convective
boiling, and developed a bubble number density bal-
ance equation. Following their procedure, the local
bubble number density equation for flashing flow in
a channel (Fig. 1) can be expressed as

on,
Mo VNw) = G0 — b ®)

ar
where ¢, ¢, and v, are the bubble source term due
to bulk nucleation, the bubble sink term due to bubble
collapse or coalescence and the local bubble velocity,
respectively.

For most engineering applications equation (6) can
be simplified by means of proper averaging. The
advantage of such an approach is two-fold. First, the
variables appearing in the final equation will have
explicit definitions in terms of averaged values. Conse-
quently, it will be easy to compare predicted results
with experimental data, which in two-phase flow are
most often presented in terms of average values. Sec-
ond, by means of space averages it will be possible
to reduce the number of space variables and to treat
the problem as a one-dimensional one.

In order to simplify equation (6) into a one-dimen-
sional form and to express it by means of averaged
values of the variables, let us integrate the local bubble
number density balance equation over the channel
cross-sectional area, 4.(z). Thus

ON,

f .L @ 0 d4 +J.Lcm V(Nv,) d4
- [].¢
42

The first integral on the left-hand side is transformed
by means of the Leibnitz theorem over surfaces as

ON, A (Nyve)
oga= || Nyda—| Y
JL @ Ot 5’.”;(:) i Lz) (7 A) a

@®

¢so - ¢si) d4. (7)
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FiG. 1. A schematic representation of the channel bubble flow for flashing model.

whereas the second integral can be evaluated by means
of the Gauss—Ostrogradskii divergence theorem over
surfaces as

jj‘ V. (Nyvy)d4d = _8_ Jj (Nyvy;) d4
4,2) 0z ) Jao

+L mb_)dé_ )

@ (ng)

Substituting equations (8) and (9) in equation (7) and
then rearranging, we obtain

9 d
Ej L@ Noddta, ”A@ (Note:) d

| BMle—v) I J Cd
J;(z) ()] dé+ o (@50 —Ps:) d4
(10

where £(2) is the intersection of the channel wall with
the cross-sectional plane, 7 the unit vector normal to
the channel wall and 7, the unit vector normal to &
The usual expression for the area averaged value of
any quantity Fis given by

1
LFX)(z,0) = mjj; - F(x,y,z,0)d4. (11)

The mean bubble velocity is defined by a weighted
mean value given by

By = ({Npp:20/{{Np2)- (12)

Equation (10) can be expressed in the following form :

] 0 _
37 AelNoD) + 5 (AN )s)

= ‘L)Mdém«m»—«%»»

(A+#y)

(13)

The first term on the right-hand side represents the
flux of bubbles generated from the active nucleation
sites at the channel wall. In terms of the bubble
nucleation site density N, and the frequency f of
bubbles generated from a nucleation site, the bubble
flux term can be given by

—ANy(vy—v) = N.f. (14
Substituting equation (14) into equation (13) one
obtains

0 AN, g A LN YYD

5 (AN + 5 (AN

- NS N
- Lz) i i) dE+ AP > — i)

@s)

Equation (15) is the one-dimensional, area-aver-

aged bubble number density transport equation,

which is applicable for a channel with a variable cross-

sectional plane. For the case of flow in a pipe with a

constant cross-sectional area, it can be simplified to
the form

ONy> 0 _
& T a—z(<<Nb>>vb)

= {Pu> + P> —LLbs?>. (16)

The perimeter-averaged bubble generation rate from
active nucleation sites at the channel wall is given by

1 NDSfE
<¢w> = A_cj; (Naf) d¢ = A,

an

with the assumption that the frequency f is uniform
around the channel perimeter.

Bubble nucleation in the bulk liquid can occur
either as homogeneous or heterogeneous nucleation.
The classical homogeneous nucleation theory assumes
that a bubble is formed in the bulk liquid by the
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vaporization of molecules of the liquid into a cavity.
This cavity may be considered as any space within the
liquid phase unoccupied by liquid molecules, thus it
can be either empty or occupied by vapor. According
to the Volmer-Doring—Zeldovich theory [38], the
homogeneous nucleation rate can be expressed by

(18)

where Av and B are Avogadro’s number and fre-
quency with which a molecule within the liquid inter-
acts with its neighbors.

Foreign particles and dissolved gas normally pro-
vide ample nuclei to act as centers of vapor formation.
The vapor generation from pre-existing nuclei in the
liquid is usually called heterogeneous nucleation. The
presence of particles and dissolved gas reduces the
liquid superheat required to maintain a bubble in
unstable equilibrium. The heterogeneous nucleation
rate can be expressed in a similar form as

Jne = pr Av Bexp [~ W /KT

Jho = PrAU Bexp [_‘ Wcr//kT']

19

where ¢ is the factor of heterogeneity. This factor
modifies the critical work needed to create a cavity for
a heterogeneous nucleation case. In the papers by
Ward et al. [39] and Forest and Ward [40] it has been
shown that the presence of dissolved gas can initiate
nucleation even at temperatures below the saturation
corresponding to the local liquid pressure. Unfor-
tunately, for water all those theories yield extremely
high liquid superheats, especially at lower pressure.
As stated by Skripov [41], it is possible that for some
reason the classical theory itself is not applicable to
water at P < 0.5 p,,.

The third term on the right-hand side of equation
(16), the sink term {{ ¢ > >, takes care of the reduction
in bubble number density due to the coalescence of
bubbles into larger bubbles or bubble collapse. The
coalescence is assumed to be insignificant up to the
void fraction o, corresponding to the point with a
reasonably homogeneous distribution of a vapor
phase in the bulk liquid, i.e. the point where the dis-
tribution parameter C, reaches unity. For the flow
conditions in the experiments of Reocreux [8] and
BNL [9] the distribution parameter C, has a value of
1.0 for the void fraction « in the vicinity of 0.1 accord-
ing to the drift-flux correlation [6]. Certainly this
assumption can be extended up to the void fraction
of 0.3 beyond which the flow regime transition to the
slug or churn-turbulent flow occurs.

5. VAPOR GENERATION MODEL
FORMULATION

For a steady-state flow equation (I5) can be re-
written as

SN = But o+ bre— )4 (20)

Here ¢,,, ¢n,. ¢n and ¢ are the sources due to wall,
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homogeneous and bulk heterogeneous nucleations
and the sink due to coalescence or collapse, respec-
tively. Furthermore, various averaging symbols are
omitted for simplicity. The sink term may be neglected
for the beginning of a flashing flow, thus after an
integration from z,, to z, one obtains

sat

AN (2)vp(2) = J‘ AP+ o+ ) dz. (21)

Here z,, is the point at which the liquid reaches the
saturation condition (see Fig. 1). Equation (21) can be
solved for the bubble number densities at the flashing
inception point N, and the turning point Nb,:(_“,

respectively, i.e.

It is noted that at the turning point the distribution
parameter C, reaches 1, thus a considerable number
of bubbles migrated to the central part of a flow chan-
nel. The wall nucleation rate ¢,, may be expressed by
using the correlation developed by Kocamustafa-
ogullari and Ishii [7, 37] for nucleation site density.
They found that the wall nucleation site density can
be correlated in dimensionless form as

Nk = R} **f(p*). 24
The non-dimensional site density is defined by
NY, = Ny.Djg (25)

and the non-dimensional critical cavity radius by

R, . 20T,
R¥=—"— with R ~—
(Dd/z) (Tw - Tsat)pghfg
(26)
where D, is the bubble departure diameter. The

property function is correlated in terms of the density
ratio as

A —3.12 A 4,13
(o =2.157x10~7<i’) <1+0.0049—£) .
Pe Py

27

Originally the correlation was developed for pool
and convective boiling, and the data were correlated
by using different effective superheat for those two
types of boiling. Our calculations show that this cor-
relation can be generalized even for the flashing flow
by introducing the appropriate superheat in the
boundary layer where the bubble is generated. For
convective boiling, the effective liquid superheat to
which the nucleation sites and growing bubbles at the
wall are exposed fluctuates between (7, —T,,) and 0
due to the nucleation, evaporation and liquid con-
vection. Therefore, in the sense of averaged values,
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the mean superheat is of the order of AT, .. ~ AT/2.
However, in the correlation development for the
nucleation site density, the apparent superheat AT has
been used. On the other hand, in flashing flow, the
bulk liquid is superheated. Thus the effective super-
heat for nucleation is AT, because there is always
sufficient supply of superheated liquid at the wall. The
bubbles are initiated from smaller wall cavities and the
bubbles grow much faster than in convective boiling.
Thus it is postulated here that the active nucleation
site density correlation obtained for the pool and
forced convective boiling could be used to predict the
active nucleation site density in flashing with an effec-
tive average superheat AT, .= AT, rather than
ATy s Practically this will result in smaller critical
radii of cavities. Thus the effective nucleation site den-
sity for flashing flow is given by modifying equation
(24) as

Nr o] { 20T,
i (Dd/z) 2(Tf_Tsal)pghfg

Jones and Shin [35] reported the values for the mini-
mum critical cavity sizes from their analytical wall cav-
ity model. The present calculations, using the super-
heat AT, and the effective critical cavity size
expression by Kocamustafaogullari and Ishii [37), are
within a few percent of theirs. A bubble departure
diameter D4, necessary to obtain an active nucleation
site density N, is determined by Kocamustafa-
ogullari’s model [42] given by

0.5 A 0.9
Dd=2.64x10-59(i) (-”) :
gAp Pe

To estimate the frequency of bubble departures the
expression given by Zuber [43] is adopted here, thus

_ ya
Dof = 1.18[%[)—3):] .

Pr

}_ f%). 28)

29)

(30)

Using the expressions given by equations (17) and
(25)—(30) one can find the bubble nucleation rate at
the wall. Furthermore, by integrations given by equa-
tions (22) and (23) it is possible to determine the
bubble number densities at the location of flashing
inception and the turning point, i.c. where the dis-
tribution parameter C,, has the value of ~ 1.0. Apply-
ing the bubble growth law in the variable pressure
field [10] it is possible to estimate a bubble radius by

R@) = (%)m {Ro + f/ﬁ Jar\/ ()

g T

2K, \/af

+ sJaz,,ﬁ[\/(Qt)—D(\/(Qt))]} (3n
T

where Q and D(Qf) represent time constants for
pressure variation and the Dawson integral. With
the idealization that all bubbles are spherical, the
void fraction can be given by
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af) = Ny(2)5mR3 (1) (32)

if the bubbles have the uniform size R,(f). However,
in most applications bubble sizes are not uniform
due to the differences in residence times. This effect is
considered below.

Atan early stage of the steady-state flashing process
in a channel, the wall nucleation due to fluid superheat
caused by the pressure drop controls the process. Thus
in equation (20), the wall nucleation source, ¢,,, domi-
nates the term on the right-hand side. The sink term,
¢, due to the bubble collapse or coalescence is basi-
cally zero in bulk superheated liquid and for very
small bubbles which are in the early stages of bubble
growth. The bulk homogeneous nucleation source ¢,
is negligible because the liquid superheat is relatively
low. Thus the preferred site nucleation such as the
wall nucleation should be much more significant than
¢no- The bulk heterogeneous nucleation source ¢,
can be significant only if a considerable amount of
dissolved gas is present in the liquid. For the present
study it is assumed that the effect of dissolved gas is
negligible on the nucleation process.

From the above considerations, the bubble number
transport equation becomes

0

—6-' (Achvb) ~ Ac¢w- (33)
z

By integration from the boiling initiation point, z,,,

to z,, one obtains

Nb(zl) = J'ZI¢WAC dZ.

Ao b (34)

Here the number density N,(z,) includes the con-
tributions from all the bubbles nucleated upstream of
point z;.

The local contribution can be considered by intro-
ducing a new parameter #,(z,, z) which is defined by

$u(2)4:(2)
Ac(z)vp(z,)

This parameter represents the contribution from the
nucleation sites at location z, i.e. a number of bubbles
per unit length of a channel originating at z and
arriving at z,.

Using the Lagrangian description, the void fraction
at z can be given by

nb(zlaz) =

(3%

a(z() = r R (1(2)my(21,2) dz. (36)

t

The time scale following the bubble can be calculated
by integrating the relation

dz = v,(z) dr. 37

For simplicity, all the bubbles within a cross section
are assumed to be flowing with the average velocity
vp(2). Then



1828

‘= J dz (38)
2 Ub (Z) '

In the above formulation the bubble average vel-
ocity v, is unknown. The expression for v, can be
obtained from the continuity relations. The vapor
continuity equation is given [1, 6] by

0 0

E(Acapg) + 5; (Acapgvb) = l—‘gAc (39)
where I, is the vapor mass source term. On the other
hand, the volumetric flux equation is given by

5, Ap
5‘2’: (ch) = rgAc <_> .

40
ngf ( )

Here jis given by j = aw, + (1 —a)v;. Under a steady-
state condition, I', can be eliminated between equa-
tions (39) and (40) after integrations to yield

Wty _pubr
j_ UﬁAc(zsa:)/Ac Ap

where o5, is the liquid velocity at the boiling initiation
point z = z,,.

Furthermore, the relative velocity correlation can
be given by the drift flux formulation [6]. In terms of
the vapor velocity and the total volumetric flux, it is
given by

@D

vy = Coj+ V).

Here C, is the distribution parameter which accounts
for the slip due to phase and velocity distributions,
and ({V;>> is the averaged local drift velocity for the
local slip between phases. Both Coand {{¥,;> > should
be expressed by a constitutive relation. For the region
near the boiling initiation point, Ishii [6] recommends

Co = (1.2-0.2{/(p,/p))(1 -~ ™). (43)

It is noted that this expression has been obtained
for a standard boiling flow in a heated pipe and not
particularly for a flashing flow. Since the boiling pro-
cesses are different, the exponent in equation (43) can
differ from the one given there. However, the trend
indicated by equation (43) is correct for a flashing
flow also, thus as a first approximation, equation (43)
is used here. For a vertical churn-turbulent bubbly
flow, the local drift velocity is given by

/4
<<Vg,->>=¢2("g?”) -
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However, the local drift velocity strongly depends on
two-phase flow regimes and flow direction, thus a
careful treatment of this term is necessary [6].
Equations (41) and (42) give the expression for v,
in terms of the void fraction, since the total volumetric
flux can be eliminated between the two equations.
Thus by using the bubble growth model such as equa-
tion (31), the solution for the void fraction can be
obtained from equation (36) with equations (38), (41)

42)

(44)
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and (42). The above formulation is used to calculate
the void fraction in the region where the wall
nucleation effect is important.

However, at a certain point the effect of the new
wall nucleations on the void fraction become rapidly
insignificant in the downstream section because of
the increased number density and a relatively large
average bubble size. In this bubble expansion region,
some simplication can be made by setting the bubble
source term ¢,, to zero. In the present analysis it has
been assumed that downstream of the location in the
channel where the distribution parameter C, reaches
unity the contribution of the newly generated bubbles
from wall nucleation may be neglected for the void
fraction calculation.

The bubble growth within a flow field is larger
than the one for a stationary case. An approximate
theoretical result to account for the relative velocity
effect on the bubble growth has been obtained by
Aleksandrov et al. [32]. This can be given as a modifi-
cation to the stationary case in the following form:

dR, dR, 20, |"?
(“a)u,;eo-(ﬂ,:o[” ] )

3R,
where the case with », = 0 denotes the stationary
bubble growth rate. This can be given, for example,
by the Jones—Zuber [10] model, equation (26) for a
stationary bubble.

The result of Aleksandrov et al. [32] has been
applied by several researchers to study bubble growth
rates in flowing systems. In order to use the above
result the local relative velocity should be specified.
Florschuetz et al. [46] and Wolfert [31] assumed a
linear relation between the relative velocity and the
bubble radius, thus

v, = const. X R,. (46)

On the other hand, Saha [34] used a local bubble
drift velocity {{¥;>>. For relatively slow processes
of depressurization of flow in a pipe or a nozzle, the
average local drift velocity ({¥,;>> may be assumed
to be constant for relatively large bubbles. However,
it is also possible to use more complicated correlations
based on the drift-flux model [6]. The average local
relative velocity can be given approximately by
RS .

1—a
which can be used in equation (45) together with the
correlation for the drift velocity.

6. COMPARISONS WITH THE EXPERIMENTS

A computer program ULYSSYS was developed
to solve the equations of the model. The system of
equations is solved by using the bubble number
density, the void fraction and the bubble growth equa-
tions (31) and (34)-(36), together with the nucleation
site density expressions (24)—(27), and bubble relative
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FI1G. 2. Bubble number density distribution along Reocreux’s test channel.

velocity (47). These are supplemented by the specified
system geometry and necessary properties. The time
is eliminated by a simple time—space coordinate trans-
formation using the vapor velocity. The result is a set
of three algebraic equations for «, N, and R, which
can be solved successively by standard numerical tech-
nigues. The present model has been applied to steady-
state flashing experiments conducted in vertical chan-
nels. In the present study, an attempt was made to
compare the model predictions with the experimental
data of Reocreux [8] and BNL [9]. The test channel
[8] was made in two parts. The lower part consisted
of a stainless steel tube with an internal diameter of
20 mm and with a length of 2160 mm. The upper part
made up the test channel proper. It consisted of a
cylindrical part with an internal diameter of 20 mm
followed by a divergent section with a peak angle of
7° and a length of 327 mm and a last cylindrical part
with a diameter of 60 mm. Initially subcooled water
at low pressures (0.21-0.34 MPa) entered the test
section at the bottom and flowed upwards. As the
pressure decreased, flashing began and two-phase
mixture flowed through the cylindrical and the diverg-
ing part of the channel. Pressure and area-averaged
void fractions were measured along the length of the
test section. The accuracy of the pressure measure-
ment was within 1% of the reading and that for the
void fraction was within 0.05. The accuracy for the
fluid temperature measurement was within 0.1°C [11].

Some results of the present model predictions of
bubble number density distribution along Reocreux’s
channel for run 403 are shown in Fig. 2 [44]. It can
be noticed that the main contribution of void coming
from the bubbles generated in the section between z,,

and net vapor generation location. The contribution
of bubbles generated downstream is much smaller,
due to the differences in residence time.

The above model formulation is used to calculate
the void fraction in the region where the wall
nucleation effect is important. However, at a certain
point the effect of the new wall nucleations on the
void fraction becomes rapidly insignificant in the
downstream section because of the increased number
density and a relatively large average bubble size. In
this bubble expansion region, some simplification can
be made by setting the bubble source term ¢, to
zero. In the present analysis it has been assumed that
downstream of the location in the channel where the
distribution parameter C, reaches unity the con-
tribution of the newly generated bubbles from wall
nucleation may be neglected. For the void fraction
calculation the results of the comparisons between the
present model predictions and Reocreux’s few exper-
imental trials are given in Figs. 3-7. The model pre-
dictions are in fairly good agreement with Reocreux’s
data up to the critical flow plane (throat) in his test
channel. Downstream of the throat (z¢, = 1351 mm)
the model predicts voids lower than experimental
values. One of the reasons is probably the presence of
secondary flows in the vicinity of the throat. Reocreux
reported [8] that the radial distribution of the void in
the diverging zone indicates that the two-phase mix-
ture does not expand completely. The same phenom-
enon was observed in the experiments with visual-
ization using the glass test channel. In the same
figure are also shown results from the model with the
assumption that the two-phase jet leaves the throat
without any expansion, and that the space between
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the jet and channel wall is filled with vapor phase. It
can be seen from those figures that the calculated void
profile is very close to the experimentally observed
one up to the characteristic length of (2 ~ 3) Dy
from the throat.

Experimental data for BNL nozzle run 137 are given
in Fig. 8. Because of much higher velocities than in
Reocreux’s case, the presence of roll waves immedi-
ately after the throat (314.8 mm) have even more
influence on the void distribution in the diverging part
of the channel.

Comparisons of the model with the data show
that the model based on the nucleation site density
correlation appears to be acceptable to describe vapor
generation in the flashing flow. For the limited data
examined here, the comparisons show rather satisfac-
tory agreement without using a floating parameter
to adjust the model.
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Fic. 7. Comparison between the present model prediction
and Reocreux’s experimental trial 440.
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7. CONCLUSIONS

A new model for flashing flow based on wall
nucleations is proposed here and model predictions
are compared with some experimental data. The
bubble number density and volumetric flux trans-
port equations are used. Thus it was possible to avoid
the usually made assumption with constant bubble
number density. Also, a vapor generation rate equa-
tion is derived. A correlation for the nucleation site
density is adopted for application in the flashing flow.
The model predictions compared with the exper-
imental data of Reocreux and BNL showed that
satisfactory agreement could be obtained with the
present model without any floating parameter to
adjust the data.
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DENSITE NUMERIQUE DE BULLES ET FORMATION DE VAPEUR DANS
L’ECOULEMENT AVEC DEPRESSURISATION

Résumé—Le phénomeéne de vaporisation relié & la décharge d’un liquide sous pression dans un envi-
ronnement a basse pression est trés important dans des systémes industriels comme les réacteurs nucléaires
et les réacteurs chimiques. Un nouveau modéle de ce mécanisme est proposé a partir de la théorie de la
nucléation, du modéle de transport des bulles. Pour calculer la densité numérique des bulles, on utilise
I’équation de transport avec une source distribuée sur des sites de nucléation a la paroi. Les prédictions
du modéle en terme de fraction de vide sont comparés avec les données expérimentales Moby Dick et BNL.
Au moins pour les conditions expérimentales considérées ici, la prédiction mécaniste du phénoméne de
vaporisation par détente est possible a partir du modéle de nucléation pariétale.

BLASENDICHTE UND DAMPFBILDUNG BEI DER ENTSPANNUNGSVERDAMPFUNG

Zusammenfassung—Das Phinomen der Entspannungsverdampfung beim plétzlichen Uberstrémen unter-
kiihlter Fliissigkeit von einem hohen zu einem niederen Druckniveau ist fiir verschiedene industrielle
Systeme wie Kernreaktoren und chemische Reaktoren sehr wichtig. Es wird ein neues Modell fiir die
Entspannungsverdampfung vorgeschlagen, welches auf der Theorie der Blasenentstehung an einer Wand,
einem Blasenwachstumsmodell und einem Drift-flux-Modell fiir die Blasenbewegung beruht. Zur Bere-
chnung der Blasendichte wird die Transportgleichung fiir die Blasen mit einer verteilten Quelle fiir die
Wandkeimstellen benutzt. Die Berechnungen des Dampfgehalts mit dem Modell werden mit exper-
imentellen Daten von Moby Dick und BNL verglichen. Die Ergebnisse zeigen, daB—zumindest fiir die
hier betrachteten experimentellen Bedingungen—die mechanistische Betrachtung der Entspan-
nungsverdampfung méglich ist, die auf dem hier vorgestellten Modell fiir die Blasenbildung an einer
Wand beruht.
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YHUCJIOBAA IIJIOTHOCTDH NY3BIPBKOB U IMTAPOOBPA3OBAHHWE NP TEYHEHUH
BCKUMAIOMEN XUAKOCTH

AnsoTamms—SIp/ieHre BCKHNIAHASA PH KCTCYCHHH HAYAILHO HeJOTPeTOR XHAKOCTH H3 COCYAa BHICOKOTO
[HaBJICHAS B CPEAy C HM3KHM NABJICHHEM YacTO BCTpEYacTCs B TAKAX MPOMBIIUICHHEIX CACTEMax, kKak
HampHMep, ATOMHBIE H XAMH4YeCKHe peakTOpH. Ilpemnoxena HoBas MozeNb mpolecca BCKHIAHHA, B
OCHOBY KOTOpPOH NMOJIONEHBI TEOpHs 3apOXICHHES My3bIPbKOB HA CTECHKE, MOJEIL POCTA Iy3BIPHKOB H
Mopens ux apeiida. [ina pacuera YACIOBO# IUIOTHOCTH My3HIPbKOB HCIONB3YETCA YPABHCHHE HX TCpe-
Hoca C pacupefesieHHHM HCTOYHMKOM 3apOXACHHS Ha CTeHKe. Pe3ynbTaTel pacdeTos, IpeacTaBIICHHBIC
yepe3 o6beMHBIE TAPOCONCPXKAHHS, CPABHHBAIOTCS C IKCIEPHAMCHTAILHBIME NaHHLIMH. [loxasano, uTO
no KkpaifHe## Mepe AJM pacCMAaTPHBAEMBIX 3KCMCPHMEHTANBHBLIX YCIOBHA C NOMOIOBIO IpeliaraeMo
MOIeJTA MOXHO NMpeicka3aTh BO3HAKHOBCHHC ARJICHHS BCKATIAHHA.
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